CS 555, FALL 2023

Name: Hemanta K. Maji

1. RSA Assumption (5+12-+5). Consider RSA encryption scheme with parameters

N=3=5xT.

(a) Find ¢(N) and Z}.

(b) Use repeated squaring and complete the rows X, X2, X* for all X € Z% as you
have seen in the class (slides), that is, fill in the following table by adding as

Homework 6

many columns as needed.

Solution.
X 31416 9|11 |12 |13 |16 | 17
XQ
X4
X |18 11922 (23|24 |26 |27 29|31 |32|33]| 34
X2
X4
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(¢) Find the row X5 and show that X° is a bijection from Z% to Z%;.
Solution.

X |18 (1922|2324 |26 |27(29|31|32]|33]| 34
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2. Answer the following questions (7474747 points):

(a) (7 points) Compute the three least significant (decimal) digits of 6251007960404
by hand. Explain your logic.

Solution.
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(b) (7 points) Is the following RSA signature scheme valid?(Justify your answer)
(rllm) =24,0 =196, N = 1165, e = 43

Here, m denotes the message, and r denotes the randomness used to sign m and
o denotes the signature. Moreover, (r||m) denotes the concatenation of r and m.
The signature algorithm Sign(m) returns (r||m)? mod N where d is the inverse
of e modulo ¢(N). The verification algorithm Ver(m, o) returns ((r||m) == o°
mod N).

Solution.
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(c)

(7 points) Remember that in RSA encryption and signature schemes, N = p x g
where p and ¢ are two large primes. Show that in a RSA scheme (with public
parameters N and e), if you know N and ¢(N), then you can efficiently factorize
N i.e. you can recover p and q.

Solution.

(7 points) Consider an encryption scheme where Enc(m) := m® mod N where
e is a positive integer relatively prime to ¢(N) and Dec(c) := ¢? mod N where
d is the inverse of e modulo ¢(N). Show that in this encryption scheme, if you
know the encryption of m; and the encryption of mo, then you can find the
encryption of (m1 x mg)?.

Solution.
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(e) (7 points) Suppose n = 11413 = 101 - 113, where 101 and 113 are primes. Let
e1 = 8765 and ey = 7653.
i. (2 points) Only one of the two exponents ey, ez is a valid RSA encryption
key, which one?
ii. (3 points) For the valid encryption key, compute the corresponding decryp-
tion key d.
iii. (2 points) Decrypt the cipher text ¢ = 3233.
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3. Euler Phi Function (30 points)

(a) (10 points) Let N = p{' - p5*---p;* represent the unique prime factorization
of a natural number N, where p; < py < --- < p; are prime numbers and
e1, ez, ..., e are natural numbers. Let Z}, = {J:: 0<z<N-—-1,gced(z,N) = 1}
and ¢(N) = |Z}‘V| Using the inclusion exclusion principle, prove that

- (-2 (2 ()

Solution.



CS 555, FALL 2023 Name: Hemanta K. Maji

(b) (5 points) For any x € Z}, prove that
2™ =1 mod N.

Hint: Consider the subgroup generated by z.
Solution.
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(c) Replacing ¢(N) with 2%Y) in RSA. (15 points)

2

In RSA, we pick the exponent e and the decryption key d from the set ZZ( N
This problem shall show that we can choose e, d € Z:;( N)/2 instead.

Let p, ¢ be two distinct odd primes and define N = pq.

1.

ii.

iii.

1v.

(2 points) For any e € ZZs(N)/w prove that x¢: Z}, — Z} is a bijection.

. . o(N) (N)
(7 points) Consider any « € Z},. Prove that 22 =1 mod pandz 2 =1

mod gq.

. . $(N)
3 points) Consider any x € Z%,. Prove that z72 =1 mod N.
N

(3 points) Suppose e, d are integers that e -d = 1 mod @ Show that
(z¢)? =z mod N, for any x € Z%.
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4. Understanding hardness of the Discrete Logarithm Problem. (15 points)
Suppose (G, 0) is a group of order N generated by g € G. Suppose there is an
algorithm Apy, that, when given input X € G, it outputs z € {0,1,..., N — 1} such
that ¢g® = X with probability px.

Think of it this way: The algorithm Ap; solves the discrete logarithm problem;
however, for different inputs X € G, its success probability px may be different.

Let p = (EXE%R) represent the average success probability of Apy solving the

discrete logarithm problem when X is chosen uniformly at random from G.

Construct a new algorithm B that takes any X € G as input and outputs z €
{0,1,..., N — 1} (by making one call to the algorithm Apy) such that ¢* = X with
probability p. This new algorithm that you construct shall solve the discrete logarithm
problem for every X € G with the same probability p.

(Rema'rk: Intuitively, this result shows that solving the discrete logarithm problem for any X € G

is no harder than solving the discrete logarithm problem for a random X € G. )

Solution:

10
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5. Concatenating a random bit string before a message. (15 points)

Let m € {0,1}" be an arbitrary message. Define the set

S = {(er) r € {0, 1}b}.

Let p be an odd prime. Recall that in RSA encryption algorithm, we encrypted a
message y chosen uniformly at random from this set S,,.

Prove the following

Pr [p divides y] < 270 [zb/p] .

yﬁsm

(Remark: This bound is tight as well. There exists m such that equality is achieved in the probability
expression above. Intuitively, this result shows that the message y will be relatively prime to p with
probability (roughly) (1 —1/p). )

11
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6. z¢ if and only if e is relatively prime to ¢(V) (20 points)

In this problem we will partially prove a result from the class that was left unproven.
Suppose N = pq, where p and ¢ are distinct prime numbers. Let e be a natural
number that is relatively prime to ¢(N) = (p—1)(¢ — 1). In the lectures, we claimed
(without proof) that the function z¢: Z}, — Z} is a bijection. The following problem
is key to proving this result.

Let N = pq, where p and ¢ are distinct prime numbers. Let e be a natural number
that is relatively prime to (p —1)(¢ — 1). Consider z,y € Z},. If 2° = y® mod N,
then prove that = = y.

Hint: You might find the following facts useful.

e Every a € Zy can be uniquely written as (ap,aq) such that o = a,, mod p
and o = a; mod g, using the Chinese Remainder theorem. We will write this
observation succinctly as o = (ap, ay) mod (p, q).

e For a, 8 € Zn, and e € N we have a® = § mod N if and only if aj = 5, mod p

and ag = 3; mod gq. We will write this succinctly as a® = (aj,ag) mod (p,q).

e From the Extended GCD algorithm, if u and v are relatively prime then, there
exists integers a,b € Z such that au + bv = 1.

e Fermat’s little theorem states that 2P~! = 1 mod p if z is a natural number
that is relatively prime to the prime p.

12
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7. Challenging: Inverting exponentiation function. (20 points)

Fix N = pq, where p and ¢ are distinct odd primes. Let e be a natural number such
that ged(e, ¢(N)) = 1. Suppose there is an adversary A running in time 7" such that

Pr [[A([z° mod NJ]) =z]] = 0.01

for x chosen uniformly at random from Z3. Intuitively, this algorithm successfully
finds the e-th root with probability 0.01, for a random z.

For any € € (0,1), construct an adversary B, (which, possibly, makes multiple calls
to the adversary A) such that

Pr[[B.([z° mod N]) =z]] =1—c¢,

for every x € Z%. The algorithm B, should have running time polynomial in 7',log N,
and log 1/e.

13
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Collaborators :
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